EVALUATION OF TRAVEL MODEL SPEEDS AND PERFORMANCE OF EXISTING MONITORING SYSTEMS IN THE SOUTH COAST

Presented to:

Modeling Task Force

By:

Tom Carlson and Bob Dulla Sierra Research

May 22, 2002

OVERVIEW

- Study objectives
- Review of existing systems and technologies
- Analysis of PeMS speeds
- Analysis of travel model speeds
- Summary of conclusions and recommendations

STUDY OBJECTIVES

Background

- The relationship between transportation and air quality planning and modeling has become more complex
- Travel model speeds are utilized to generate motor vehicle emission inventory estimates used in AQMP/SIP attainment demonstrations and transportation conformity determinations
- Recent improvements to SCAG's travel demand model have led to changes in speed estimates for both freeway and arterial roadways relative to the previous model
- Travel speed significantly affects vehicle emissions:

MVEI7G Running Emission Factors by Speed Calendar Year 2010, Catalyst Light-Duty Autos

STUDY OBJECTIVES (cont.)

- A general lack of <u>measured</u> speed data exist to examine (and validate) travel model-predicted speeds
- Speed estimates from existing roadway performance monitoring systems <u>may</u> serve as a potential source for model validation

Objectives

- Evaluate existing sources of real world speed measurements in South Coast to:
 - 1. Validate speed/travel time estimates produced by SCAG model
 - 2. Track long-term changes and trends in network performance

Study Tasks

- 1. Review existing speed monitoring systems and measurement technologies
- 2. Compare PeMS speed estimates to chase car speed measurements on freeways
- 3. Compare SCAG travel model speeds to chase car speed measurements on both freeways and arterials

EXISTING MONITORING SYSTEMS REVIEW

Available Speed Measurements for The South Coast						
Measurement Systems	Road Types Covered	Technology	Time Periods Represented	Validation	Availability	
PEMS	Freeways	Loop Induction	1/1/98 — Present	Dual Loop System in Berkeley	Internet Website	
ATSAC	Arterials	Loop Induction	Most recent two week period	Floating Car & Laser Studies	Contact LA Dept. of Transportation	
Caltrans Chase Car Studies All		Custom Speed Sensor, Laser Rangefinder and GPS	Fall 2000, Fall 2001	Duplicate Measurements from Second Chase Car	Contact Caltrans	
ARB GPS Studies	I AII I		Last 3-4 years	Differentially corrected position data	Contact ARB	

EXISTING MONITORING SYSTEMS REVIEW (cont.)

	Summary of Findings
System	Key Findings
PEMS	 Uses adaptive "g-factor" methodology to translate flow and occupancy into speed estimates Provides lane-specific information Raw data collected at 30-second intervals Data available 24/7 since 1998 from over 3,000 loops covering over 800 freeway miles in District 7 Potentially attractive source of freeway speed
ATSAC	 Loops located at intersection approaches to aid in signal timing optimization Speed estimates are "point in space" values LA City estimates speeds accurate to ± 5-10 mph and speed validation studies are limited Data currently archived for most recent two week period Not viable source of arterial <u>link</u> speeds at this time
Caltrans Chase Car Studies	 Second-by-second speeds measured by following randomly selected vehicles Fall 2000 study collected measurements over 100 OD-based road routes, driven twice each (covered mixture of roadways) Fall 2001 study focused intensive sampling of three freeway corridors in Los Angeles/Long Beach (I-105E/W, I-110N) Data collection was not optimized for model speed validation
ARB GPS Studies	 In-house research designed to develop a GPS instrumentation package and turnkey analysis system to measure vehicle speed and trips Speeds measured from a limited set of vehicles instrumented in conjunction with ARB Surveillance Program Spatial processing necessary to identify roadways and times vehicles were driven under "deployed" study Initial spatial processing system not fully reliable

ANALYSIS OF PEMS SPEEDS

- Chase car speed measurements from Fall 2001 freeway study were compared to PeMS speeds from mainline loops along I-105E, I-105W and I-110N corridors
- Chase car speeds were measured from 8:00 AM to 9:30 PM on nine midweek days during mid-November
- Measured speeds were compared to PeMS speeds obtained from UC-Berkeley/PATH on a 5-minute basis
- The spatial basis for comparison was defined by segmenting each freeway corridor into "sections" (consistent with HCM)

- Freeway sections represent a similar roadway length to freeway links defined in SCAG's modeling network
- The <u>average</u> speed measured by the chase car as is traversed each section was compared to the PeMS speed for the 5-minute period during which the traverse occurred
- This approach was favored over an <u>instantaneous</u> chase car speed comparison because of the ultimate goal of validating modeling link speeds
- Comparisons were performed by lane for sections which contained mainline loops (28 out of 40)
- The resulting analysis dataset contained over 4,500 paired (chase car vs. PeMS) speed observations

	mmary o Treeway F	-	-	•		
		105 E		105 W		110 N
		AM^b	Midday ^c	AM^b	Midday ^c	PM^d
Sample Size ^a		565	1173	572	1503	689
	Av	erage Speed	ds (mph)			
PeMS Speed	Mean (StdErr)	55.05 (0.56)	50.23 (0.47)	52.58 (0.54)	57.81 (0.24)	63.44 (0.11)
Chase Car (CC) Speed	Mean (StdErr)	66.80 (0.37)	61.91 (0.39)	55.62 (0.61)	64.07 (0.21)	67.98 (0.23)
	Spee	d Comparis	ons (mph)			
CC-PeMS	Mean (StdErr)	11.75 (0.58)	11.67 (0.41)	3.04 (0.38)	6.27 (0.27)	4.55 (0.26)
	t value prob>t	17.6 < 0.01	19.2 < 0.01	3.7 < 0.01	19.6 < 0.01	17.6 < 0.01
Normalized Difference (CC-PeMS)/CC	Mean (StdErr)	0.16 (0.02)	0.17 (0.01)	0.02 (0.01)	0.09 (< 0.01)	0.06 (<0.00)
PeMS>CC	Number (%)	67 (11.9%)	202 (17.2%)	196 (34.3%)	296 (19.7%)	170 (24.7%)
CC>PeMS	Number (%)	498 (88.1%)	971 (82.8%)	375 (65.6%)	1206 (80.2%)	519 (75.3%)

Number of speed pairs (chase car, PeMS 5-minute data)
 Defined as the 8:00 to 10:00 AM sampling period

^c Defined as the 11:30 AM to 2:30 PM and 4:00 to 5:30 PM sampling periods

^d Defined as the 5:30 to 9:00 PM sampling period

Chase Car and PeMS Speeds for I-105E AM Period

Chase Car and PeMS Speeds for I-105E Midday Period

Chase Car and PeMS Speeds for I-105W AM Period

Chase Car and PeMS Speeds for I-105W Midday Period

Chase Car and PeMS Speeds for I-110N PM Period

Speed Differences by Individual Loop

Difference in Speeds as a Function of Lane Number (Chase Car Speed - PeMS Speed)						
		105 E		105 W		110 N
		AM	Midday	AM	Midday	PM
ML Lane 1	N	230	474	198	557	179
Chase Car Speed PeMS Speed	Mean Mean	70.21 54.87	64.89 50.25	59.10 54.47	67.27 57.65	72.54 63.66
Speed Difference	Mean (StdErr)	15.34 (0.90)*	14.65 (0.63)*	4.63 (0.56)*	9.62 (0.44)*	8.88 (0.47)*
ML Lane 2	N	239	482	280	694	273
Chase Car Speed PeMS Speed	Mean Mean	65.25 55.04	61.41 50.71	54.17 51.42	62.94 57.91	67.94 63.30
Speed Difference	Mean (StdErr)	10.21 (0.87)*	10.71 (0.63)*	2.75 (0.58)*	5.04 (0.35)*	4.64 (0.36)*
ML Lane 3	N	96	216	93	243	175
Chase Car Speed PeMS Speed	Mean Mean	62.50 55.54	56.44 49.10	52.67 52.31	60.09 57.86	65.31 63.16
Speed Difference	Mean (StdErr)	6.96 (1.32)*	7.34 (0.95)*	0.37 (0.84)	2.22 (0.73)*	2.15 (0.47)*
ML Lane 4 N	N	0	1	1	9	62
Chase Car Speed PeMS Speed	Mean Mean	-	- -	-	60.74 57.98	62.54 64.16
Speed Difference	Mean (StdErr)	-	- -	-	2.76 (2.56)	-1.62 (0.84)

⁻¹²⁻

ANALYSIS OF TRAVEL MODEL SPEEDS

- Chase car speed measurements from the Fall 2000 route-based driving study were compared to link speeds from SCAG model
- Spatial processing was performed to compute average chase car speed as it traversed each link
- A total of roughly 1300 link speed measurements were obtained, covering a mixture of freeways and arterials and times of day
- Few repeat observations (~2-4) were available for each individual link
- Since chase car speeds were compared to single model speed for each multi-hour modeling period, in-period variation had to be addressed:

ANALYSIS OF TRAVEL MODEL SPEEDS (cont.)

• The data were grouped by facility type (freeway or arterial) to address small sample sizes and in-period variation

Comparison of Measured and Model Link Travel Times
Major Arterials, Midday Period

Distribution of Speed Measurements for Each Facility Type Midday Period (30-Minute Intervals)

ANALYSIS OF TRAVEL MODEL SPEEDS (cont.)

- Statistically significant quantitative conclusions could not be drawn
- However, qualitative comparisons indicate the model <u>may</u>:
 - Under-predict midday freeway speeds
 - Over-predict midday and PM major arterial and midday minor arterials speeds

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- Review of available speed monitoring systems shows there is no single source that routinely covers all roadways
- PeMS is an attractive source of continuous freeway data
- Chase cars provide very accurate speed measurements, but coverage is limited and not routinely collected
- Comparative analysis of PeMS loops along three freeway corridors indicates PeMS consistently under-estimates actual speed measured by chase cars between 3 and 12 mph
- Further refinement of g-factor algorithms and data filtering is needed before PeMS data could be used for validation of SCAG model
- Limited chase car measurements indicate <u>possible</u> biases in SCAG model speeds

Recommendations

- A sample size analysis must be conducted to define minimum dataset required to account for in-period, vehicle-to-vehicle and day-to-day speed variations and enable statistically-significant model validation
- Coordinate with Caltrans and Berkeley/PATH on mechanisms to improve PeMS speeds and routinely obtain data from the system
- Develop a program for regular collection of speed measurements on arterial roads